Sliced Generative Models
نویسندگان
چکیده
منابع مشابه
Sliced Wasserstein Generative Models
In this paper, we aim to introduce the classic Optimal Transport theory to enhance deep generative probabilistic modeling. For this purpose, we design a Generative Autotransporter (GAT) model with explicit distribution optimal transport. Particularly, the GAT model owns a deep distribution transporter to transfer the target distribution to a specific prior probability distribution, which enable...
متن کاملGenerative Modeling using the Sliced Wasserstein Distance
Generative Adversarial Nets (GANs) are very successful at modeling distributions from given samples, even in the high-dimensional case. However, their formulation is also known to be hard to optimize and often not stable. While this is particularly true for early GAN formulations, there has been significant empirically motivated and theoretically founded progress to improve stability, for insta...
متن کاملSliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...
متن کاملLearning Deep Generative Models
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Schedae Informaticae
سال: 2018
ISSN: 2083-8476
DOI: 10.4467/20838476si.18.006.10411